Controlled Growth of Filamentous Fatty Acid Vesicles under Flow

نویسندگان

  • Christian Hentrich
  • Jack W. Szostak
چکیده

The earliest forms of cellular life would have required a membrane compartment capable of growth and division. Fatty acid vesicles are an attractive model of protocell membranes, as they can grow into filamentous vesicles that readily divide while retaining their contents. In order to study vesicle growth, we have developed a method for immobilizing multilamellar fatty acid vesicles on modified glass surfaces and inducing filamentous membrane growth under flow. Filament formation strictly depended on the presence of freshly neutralized fatty acid micelles in the flow chamber. Using light microscopy, we observed a strong dependence of initial growth velocity on initial vesicle size, suggesting that new fatty acid molecules were incorporated into the membrane over the entire external surface of the vesicle. We examined the influences of flow rate, fatty acid concentration, and salt concentration on filamentous growth and observed drastic shape changes, including membrane pearling, of preexisting membrane tubules in response to osmotic stress. These results illustrate the versatility of flow studies for exploring the process of fatty acid vesicle growth following exposure to free fatty acids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A kinetic study of the growth of fatty acid vesicles.

Membrane vesicles composed of fatty acids can be made to grow and divide under laboratory conditions, and thus provide a model system relevant to the emergence of cellular life. Fatty acid vesicles grow spontaneously when alkaline micelles are added to buffered vesicles. To investigate the mechanism of this process, we used stopped-flow kinetics to analyze the dilution of non-exchanging FRET pr...

متن کامل

Effect of macro green algae extract on tomato (Lycopersicum sculentum Mill.) seedling growth characteristics

The effect of macro green algae (Chaetomorpha gracilis) inf Bandar-Abbas and filamentous green algae (Spirogyra sp.) in the Sirch river (Kerman Province) were assayed on growth characteristics of the tomato (Lycopersicum sculentum). In the seed priming experiment, we collected hot water extracts of green algae (Chaetomorpha gracilis) from Bandar Abbas seashores and filamentous green algae (Spir...

متن کامل

Photochemically driven redox chemistry induces protocell membrane pearling and division.

Prior to the evolution of complex biochemical machinery, the growth and division of simple primitive cells (protocells) must have been driven by environmental factors. We have previously demonstrated two pathways for fatty acid vesicle growth in which initially spherical vesicles grow into long filamentous vesicles; division is then mediated by fluid shear forces. Here we describe a different p...

متن کامل

Engineering Artificial Cell Membranes

Growth and division are essential biological processes of cellular life. A crucial question concerning the origin of cellular life is how primitive cells (protocells) lacking complex biological machinery could grow and divide. To address this question, we first developed an effective method for preparing large monodisperse (uniform-sized) vesicles through a combination of extrusion and large-po...

متن کامل

Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles.

Electrochemical proton gradients are the basis of energy transduction in modern cells, and may have played important roles in even the earliest cell-like structures. We have investigated the conditions under which pH gradients are maintained across the membranes of fatty acid vesicles, a model of early cell membranes. We show that pH gradients across such membranes decay rapidly in the presence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2014